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Absence of Screening in Certain Lattice Gauge 
and Plasma Models 
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We discuss some Abelian lattice gauge models of the noncompact variety, 
including models of relativistic and nonrelativistic plasmas. For all these models 
we show absence of exponential clustering for some observables in some 
domains in parameter space. We comment on the physical meaning of these 
results, in particular with respect to Debye screening of static electric charges. 

KEY WORDS: Coulomb systems; Debye screening; Higgs transition; 
plasmas. 

1. I N T R O D U C T I O N  

One of the major  problems in gauge theories is to unders tand the so-called 
Higgs transit ion in models with matter. This transition is supposed to have 
had a major  effect on the development  of the early universe and it is also 
occurring in superconductors.  But unlike the magnetizing transit ion of 
ferromagnetic spin systems which is a limiting case of it, not  much rigorous 
understanding of it been achieved. 

In Ref. 1 it was shown that  in three space-time dimensions Abelian 
models of  the so-called noncompac t  type show such a transition. In Ref. 2 
it was shown that such models always have a Higgs phase characterized by 
exponential  decay of correlations and exponential  screening of both  electric 
and magnetic fields. 

Here we prove that  the same type of models always has a massless 
phase with Coulombic  behavior  of electric and magnetic  fields and a 
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massless photon, provided the dimension of space-time is at least 3 and the 
matter fields are sufficiently massive. Our proof is more elementary and 
more general than the argument given in Ref. 1; it allows one to treat fer- 
mionic as well as bosonic matter. 

By the same technique we also prove some results for certain models 
of a plasma: First we show that a relativistic plasma described by a finite 
temperature lattice gauge model of the type considered before, has a 
plasma phase characterized by the absence of screening of static magnetic 
fields, aside from a possible Higgs or superconducting phase that screens 
all fields. Second we interpret a nonrelativistic quantum Coulomb system 
(on a lattice) as a kind of lattice gauge theory and find that the correlation 
length for nonstatic observables is infinite. 

Since in both plasma models static electric sources couple to the long- 
range fields by way of the matter we are led to conjecture: Neither in a 
relativistic nor in a nonrelativistic plasma Debye screening holds in the strict 
sense; by this we mean that the electric field of a static external source is 
not screened exponentially but has a long-range tail decaying like an 
inverse power of the distance. This type of conjecture has previously 
appeared in Ref. 10b, p. 428. Of course we do not want to suggest that the 
Gaussian approximation that predicts exponential screening (3) is not very 
close to the truth for all but extremely large distances. 

2. A GENERAL RESULT 

Here we want to show that massless behavior is a consequence of the 
general structure of the effective interaction of the gauge field arising from 
integrating out the matter fields, provided they are massive enough, keep- 
ing the vecuum polarization effects small. The proof is obviously inspired 
by the method of Fr6hlich and Spencer ~4) to prove the absence of screening 
in dipole gases (see also Park(5)). In fact the reason can be stated in short 
as followed: Vacuum polarization produces (electric and magnetic) dipoles; 
dipoles do not screen. 

We consider the following class of models: 
The electromagnetic field is described by a real value 1-form A on a 

lattice yv or AcY_ 3, v ~> 3. (We use the familiar formalism of chains, co- 
chains = forms, exterior derivatives etc. on the lattice. See, for instance, 
Ref. 6). 

We want to study Gibbs measures of the form 

1 
- - e - S A  1-[ dAt (2.1) 
ZA /~  A(I) 
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and their thermodynamic limit(s) A ~ Z '. A (~ denotes the set of links (1- 
cells) in A. The action SA is 

SA 

where 

= Sy.M.,A ~'- SM, A (2.2) 

1 
Su M.,A = ~ e  ~ [(dA, dA)A + ~(d*A, d * A ) , ]  (2.3) 

c~ = 1 is the Feynman gauge, c~ = oe the Landau gauge. For  convenience we 
will set ~ = 1 from now on. 

SM arises from integration over some matter  fields and possibly some 
of the degrees of freedom of the gauge field. Here we just assume 

-SM,A = Re ~ cj e i{aJ) (2.4) 
J 

s u p p j  c A 

where the sum is over a set of 1-chains (which we identify with 1-forms) j  
corresponding to closed loops in the finite lattice A c Z v. This means that 
the f s  are coclosed (d*j = 0) and integer valued. The coefficients cj are real 
valued and approximately independent of A and translation invariant. 
F rom the structure of the proof  it will become clear what kind of violation 
of A independence of the c~ can be tolerated; for suitable (e.g., free) boun- 
dary conditions they will be exactly independent of A and translation 
invariant. We will not discuss this question any further. 

Finally we have to make a convergence assumption: 
(C) There is an e > 0, independent o f  A, l e  A (1) (the set of links in A) 

such that 

ICjl~lEJll~ < oe (2.5) 
l ~ supp  j 

where 

IlJ[I 1 = ~ IJ/I (2.6) 
l 

Translation invariant thermodynamic limits of the measures (2.1) 
always exist by compactness arguments. In Theorem 2.1 ( . )  denotes such 
a limit or a finite volume expectation. 

The result we want to prove in this section is as follows: 

T h e o r e m  2.1. Let jc be a real-valued, coclosed 1-form of compact 
support. Then under the condition (C) 

((Jc,  A ) ~ ) ~ > g z ( J c , - A  ~Jc) 
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where 0 2 > 0 is independent of A and - A  = d ' d +  rid* is the Laplacian for 
g v or for A, respectively. 

This has the following consequence: 

C o r o l l a r y  2.2. In any translation invariant thermodynamic limit of 
(2.1) the two-point function of dA does not decay exponentially. 

Proof of the Corollary. By the theorem the Fourier transform of the 
two-point function has a singularity at the origin. So by the Paley-Wiener 
theorem the two-point function cannot decay exponentially. | 

Remark.  It can also be seen, using an argument of Ref. 4, that the 
two-point function of the field strength dA is not absolutely summable: Its 
Fourier transform is not continuous (though bounded) at the origin, so it 
is not the Fourier transform of a finite measure. 

Proof  o f  the Theorem. We use the complex translation method of 
Refs. 7 and 4. 

By Cauchy's theorem we may replace A by A + iB in the unnormalized 
expectation 

[ei(J,,,A)]A =_ ZA(ei(J,., A)) A = f ei(.h.,A) SA(A) (2.7) 

[-provided we do not leave the domain of convergence of the series (2.4)]. 
B is again a real-valued 1-chain (supported in A). Working out the 
exponent of the integrand in (2.7) we obtain 

i(jc, A)  -- SM(A)  - SyM.,A(A) 

-- (j,., B) + ~ Q[-cos(A + iB, j )  - cos(A, j ) ]  

1 
+Tpe~ [-(dB, dB)+ (d'B, d*B)] 

i 
e2 [(dA, dB)+ (d'A, d 'B) ]  (2.8) 

This leads to the estimate 

[[-ei(jc,A)]lA <...f e SA+F 

where 

1 
F =  ~ [(dB, dB) + (d 'B ,  d*B)] + ~ @[cosh(B, j)  - 1 ] - (B, Jc) (2.9) 

J 

logl@i(Jc'A))Al<<.~---~(B , - - A B ) + ~ C / [ c o s h ( B , j ) - - I ] - - ( B , j ~ .  ) (2.10) 
J 
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In (2.10) we can take the thermodynamic limit A/" 2 ~. We should then 
optimize the bound by choosing a good B. Making an educated guess 
(educated by reading Ref. 4) we choose the potential appropriate to a 
current loop in a polarizable medium, 

B = --yA - l  jr ,  

where A ~ is the inverse of the infinite volume Laplacian (the fact that this 
B does not have compact support clearly does not cause any problems). 
This gives 

logl(ei(Sc'a))] <~(j~. --A-Ij~) ~e2-? + ~, ca[cosh y(j~, A -ljc ) - 1 ] 
J 

(2.11) 

This inequality becomes an equality for Jc = 0. So if we replace Jc by 
ej~., divide by e2, and take the limit e + 0 [there are no O(e) terms] we 
obtain 

1 ( 7 2 ) ?  2 
-~ ( (J~, A) 2) >~ (Jc, -a-~Jc) - ~e2+7 ---~ ~ ca(J, A-lJ~) 2 (2.12) 

J 

This limiting procedure is easy to justify using condition (C). 
Now we look at the sum over j more closely. We claim the following: 

Lemma 2.3. Under the condition (C) 

~c:(j,  A lj~)2 <~Kc(j~, - A  lj~) 
J 

where c is a geometric constant and 

K = s u p  ~ [CaIHJlI~ (2.13) 
l s upp j~ l  

Proof. We "decompose j into loops": 

!lJtl~ 

J= ~ J k  
k = l  

where jg takes only the values 0, + 1 and d*jk = 0 for all k. We require that 
each Jk describes a closed loop and for any given link all the loops going 
through l go through it in the same direction. 
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We may "span a minimal surface" into each loop, i.e., we may write 

J k  = d*~k 

where ~ are integer-valued 2-forms obeying 

I[Jklll (2.14) 

with some universal constant c. 
We prove (2.14) with c =  1/2: 

I_emma 2.4. Let j be a 1-chain describing a closed loop. Then there 
is a 2-form ~o(j) describing a surface bordered by j such that 

Ilco(J)ll 1 ~< �89 ][Jll~ 

Proof. We proceed by induction on IIJ111. For I1J111~<4 the lemma 
obviously holds. Let now IIJ111/> 4. Let 

E , -  {X~7/d[Xd=t} (2.15) 

T -  sup{ t [ supp j c~ E, # 0 } (2.16) 

By possibly reordering the coordinates of Z d we may assume that 
suppj ~ ET. Let j(r) be the part o f j  lying in Er, j IT- 1)the translate o f j  (T) 
lying in Er_  1, 

d,j(r)==_p(r), d,j(T l ) = p ( T -  l) (2.17) 

l a 1-chain satisfying 

d,l=p(T) p(T 1), ]l/Ill= [IP(T)H1 

(i.e., l consists of the links in the d direction connecting p(T) and p(r 1) 
Define 

jl=j(T)__j(T 1)__l, j2=_j__jl (2.18) 

Then d*ji = 0 = d'j2 and 

IIJ2ll ~< IlJl]l-I]1111, [IJ(T)H 1 ~ IlJllt-II/111 (2.19) 

II/ll i >~ 2 (2.20) 

It is obvious how to define co(j1) such that 

[]fo(jl)H 1 = [[j(r)l[ 1 (2.21) 
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[co(j~) consists of the plaquettes determined by the links of j(T) and their 
translates in j ( v -  ~)]. 

By the induction hypothesis there is a co(Jz) with d ' c o ( j 2 ) = J 2 ,  taking 
values 0, _+ 1, such that 

ll)2ll 1 (2.22) 

Then define c o ( j ) - r  r It obeys by construction 

I Ico(J ) ] l  ~ ~< HJ(T)H 1 + 1 IlJ21I~ (2.23) 

By (2.19), (2.20) this is bounded by 

IIJll i - 2 + k(l[Jll ~ - 2 )  2 ~ �89 []Jll ~ (2.24) 

as desired. I 

Y,k co( jk) -  co(j) is an integer-valued 2-form satisfying 

rico(J)l], ~< ~ II~Ok(J)lr i <~ ~ c IIJKIF~ <~ c IIJll~ (2.25) 
k k 

So we can write 

= 

= Z cj Z (Jc, J-1  d*~op) 
j P,P" E supp  co(j) 

x (Jc, A i d*cop)(co(j),p)(co(j),  p ' )  (2.26) 

where cop is the unit 2-form associated with the plaquette p and we under- 
stand by p e supp co that (co, p) > 0. 

The last expression ccan be estimated (using Schwarz's inequality) 
followed by IIco(J)Jl~ ~ Ilco(J)ll~ by 

So 

Using 

~, Icjl I[co(j)/I 2 ~, (dL,A 1cop)2 (2.27) 
j P E s u p p j  

~j cj(Jc, z~ 1 j ) 2  ~ Z ( d j c ,  A- l ( j )p )2  Z Icjlllco(j)]b~ ( 2 . 2 8 )  

�9 P j: P c  supp  co(j) 

(djc , A - '  COp) z = (j~., A - 2  djc) = (Jc, - A - l j ~ . )  
p 

(2.29) 
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and the bound 

Icjl II~(J){l~ < Z IcjlIIo)(j)IL~ 
j :  P ~ supp  co(j) j :  l ~ supp  j 

(because there exists a link within distance Ilco(j)lll of P through which j 
passes) 

<~ ~ Icjlc ]IjH6=K'c (2.30) 
j :  s u p p j ~ t  

by (2.25) we conclude 

~ cj(jc, A- l  j) 2 <. K" c(jc, - A-l  jc) | 

Inserting the lemma into (2.12) gives 

1 72 
~ ( (jc, A )2) >~ (jc, - A-tjc) I -  -~ (-~ + Kc) + y I (2.31) 

This bound becomes optimal for 

7 = 2(2 = (e 2 + Kc)-I (2.32) 

and gives with this choice 

( ( j~ ,A )2 )>~2( j c , -A  ~Jc) 

which concludes the proof of the theorem. | 
We can see from this result that occurrence of the Higgs mechanism is 

necessarily accompanied by a breakdown of the convergence condition (C). 
A familiar example is furnished by the Schwinger model where (in the con- 
tinuum) 

e 2 

SM-- (dA, - A  ~ dA) (2.33) 
2re 

If we interpret (2.33) as a lattice action it clearly does not have an expan- 
sion of the form (2.4) satisfying condition (C). 

3. ZERO T E M P E R A T U R E  LATTICE G A U G E  M O D E L S  
W I T H  M A T T E R  

These models are defined in terms of an action 

S =  Sv.M.+ SM (3.1) 

where M = H, F refers to either scalar (H) or fermionic (F) matter fields. 
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A Higgs field ~b is a complex-valued scalar field living on the sites of 
the lattice: 

SH, A=~CRe ~ O(x) eiAx'~(y)+ ~ V(l~b(x)[} (3.2) 
( x y ) E A  (1) x c A  

The potential V has to satisfy a bound 

V(R) >1 cR 2 

and is sometimes replaced by the constraint [~b(x)4 = R0. 
The fermion fields 0, ~ are generators of a Grassmann algebra living 

on the sites of the lattice and 

SF = ~C ~ ~(x)rxye iAxy ~( y) + ~x ~(x) FO(x) 
x 

(3.3) 

Here Fxy, F are some finite-dimensional matrices. The Gibbs measure 
for scalar matter is 

1---e SyM,A-~",~ II dA,H dfb(x) dO(x ) (3.4) 
Z A  l x 

whereas for fermions the role of the Gibbs measure is played by the 
"Berezin integral" 

1 
- - e  -sYM dO(x) d (x) 
ZA x 

For details see, for instance, Ref. 8. 
We define 

- -  S M ,  A =-- log I e - XM,A d(matter) (3.5) 

It is then a standard application of the polymer expansion (see for 
instance Ref. 8) to show that for sufficiently small ~c SM,A is indeed of the 
form (2.4) and satisfies (C). 

It should be remarked that small ~c corresponds to very massive matter 
fields. If we use the constraint ]~b(x)E = Ro, ~cR~ is the relevant parameter 
that has to be small. 

We thus obtain the following. 

T h e o r e m  :3.1. For bosonic or fermionic matter there is no mass 
gap (exponential decay of correlations) provided the hopping parameter 
is sufficiently small or, equivalently, the mass of the matter fields is suf- 
ficiently large. 
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4. FINITE T E M P E R A T U R E  ABELIAN LATTICE GAUGE MODELS 
( RELATIVISTIC P L A S M A S )  

We consider tile same kind of models as in the previous section. But 
now we go to finite temperature, that is, we keep the lattice finite and 
periodic in time direction with period/3/~ (r is the lattice spacing in time 
direction). For fermion fields antiperiodic boundary conditions have to be 
used. 

The gauge field can be decomposed into frequency modes: 

~/~ 1 2~nt Axy(t)= ~ cos--h--A~/ (4.1) 
n = 0  , u  

(The time t runs through 0, z, 2z, . . . , /~-r) .  
We are interested mostly in the "static magnetic mode" A(x~ ~ where 

( x y )  runs through the spatial links. 
Keeping at first a finite spatial lattice Ao we define as before 

- -  S M,Ao(  A ) =-- log f e -  ~Md(matter) (4.2) 

Again the polymer expansion can be used to see that (2.4) and (C) 
hold. 

There is one difference, however: The sum over loops (2.4) now also 
contains noncontractible loops (so-called Polyakov loops). 

In a Gaussian approximation those Polyakov loops seem to give a 
mass to the "static electric mode" A(~~ ) where ( x y )  is in time direction. 

We want to study the static magnetic properties of the system, 
however. For this purpose we introduce a static external curent Jc, i.e., Jc is 
a coclosed, real-valued, time independent 1-form supported on spatial 
links, 

We follow the patern of the proof of Theorem 2.1 to estimate 

[ei(jc 'A)]A 0 

There might seem to be a problem because A = d d * +  d*d now does 
not have an inverse since there are harmonic 1-forms due to the periodic 
boundary conditions in time. Our static external current Jc is, however, 
orthogonal to the kernel of A and we may define unambiguously 

B = -TA -ljc 

as before. In fact we may interpret A in this formula as the spatial 
Laplacian since fi  is static. 
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Proceeding now as in the proof of Theorem2.1 we obtain the 
following: 

T h e o r e m  4,1. In a relativistic plasma as defined in this section 
static magnetic fields are not screened provided the matter fields are suf- 
ficiently massive (i.e., the hopping parameter is small enough). 

It should be remarked that by the methods of Ref. 2 the existence of a 
Higgs phase for the bosonic model can be seen also at finite temperature. 
In this phase magnetic fields are screened exponentially. It should be inter- 
preted as a model of a superconductor. 

There is also an example for a Higgs phase of a fermionic plasma: This 
is again the Schwinger model, this time at finite temperature. Whereas in 
the bosonic model increasing the temperature tends to destroy the Higgs 
mechanism this is not so in the Schwinger model. 

5. NONRELATIVISTIC QUANTUM COULOMB SYSTEMS 
(NON RELATIVISTIC PLASMA) 

It has been firmly established some time ago that classical Coulomb 
systems have a plasma phase showing Debye screening. 19o1~ 

There is a difficulty, however, if one tries to extend this result to the 
quantum statistical setting, which has been noticed long ago (P. Feder- 
bush, private communication to D. C. Brydges; see also Ref. 10b): While it 
seems that a mass gap is generated at lowest order for static correlations 
this is not so for nonstatic ones. The method described in Section 2 can be 
used to give a proof that there is no screening for nonstatic sources (of a 
certain kind). 

To apply our method it is convenient (and maybe of some interest) to 
cast the quantum Coulomb system into the form of some kind of lattice 
gauge model (cf. Refs. 10b and 17). 

The Hamiltonian for n positive and n negative particles on the lattice 
Ao ~ Z d is 

e 2 1 - - e  2 H2n- 2MA2~ ~ Vc(x,-yfl+-~ [Vc(xi-x;)+ V~.(y,-y;)] 
i , j  r 

(5.1) 

A is the lattice Laplacian, A2n the corresponding operator on the 2n-par- 
ticle space. 

For  Boltzmann statistics H2n is considered as an operator on 
(~ 2n(/2(Ao)) =- ~n'B. 
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For Bose statistics H2n acts on 

s 

and for Fermi statistics on 

~2n,f - A2n(lZ(Ao)) 

The grand canonical partition function for the neutral system is 

• z2n , e B~/2. (Boltzmann) 
: "  = n~o ~ 5  Trje2,~ 

z -  - ~ z2- e fill2. (S= Bose or Fermi) ~s -- Wr ~2,,, 
n = O  

(5.2) 

(5.3) 

where Vc(X-x')= (-A 1)(x-x') is the lattice Coulomb potential. Then 

Tr~2,,Be-~H= f d # c ( A 0 ) T r ~ T e x p [ - I f  (Ho+ieAo)dr I 2n (5.5) 

and 

Tr ~z.,~e ~H= f d#c(Ao) Tr ~2,,sT ( {exp l -  fo (Ho + ieAo) d~]} | 

x {expl-f~(Ho-ieAo) dr]} | (5.6) 

Here H o is the free one-particle Hamiltonian - ( 1 / 2 M ) A  and T denotes 
time ordering. To verify these formulas it is easiest to expand in powers of e 
and use Wick's theorem. 

(5.5) and (5.6) contain only one-particle Hamiltonians. (5.5) can be 
summed directly to give the grand canonical partition function 

( Ao(x, t) Ao(x', t') ) = Vc(x- x') a(t- t' ) (5.4) 

We now introduce the well-known sine-Gordon (Siegert) 
transformation~ Let d#(Ao) be the Gaussian measure with mean zero 
and covariance 
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For Bose and Fermi statistics we use the standard formula for an 
uncoupled system 

log ~ s =  ~" - t r ~ l  log(1 -Zes e-~H) 

= ~ (zc')n tr~e, le -~H (5.8) 
n r t = l  

where H is a one-particle Hamiltonian and 

1 (Bose) 

e ' =  - 1  (Fermi) 

This gives for the Coulomb system 

2s= f @(Ao)exp ~ (zes)ntr~elTexp[-f]~ 
n=l n 

(Ho + ieAo) dr] (5.10) 

where Ao is extended periodically with period /3. (5.7) and (5.10) can be 
rewritten using a lattice Feynman-Kac formula. Let dP2y(co) be the "lattice 
Brownian bridge" for paths starting at x and ending at y after t. It is 
related to the lattice heat kernel in the same way as the Brownian bridge to 
the usual heat kernel: 

(exp tA)(x, y) = f dP'~)(co) (5.11) 

The paths w have to be considered as functions 

co: [0, t] --* A o (5.12) 

where Ao is the spatial lattice. 
This allows us to write 

- = dPxx (co) (5.13) t ry ,  exp (H o + ieAo) dz j fl/2M eie(Ao,co) 

where we write (A0, co) for 

I f  Ao(co(z), ~) dr 

to bring out the analogy with (2.4). Thus co is identified with a charge den- 
sity concentrated on the path co. 



418 Brydges and Seiler 

Inserting (5.13) in (5.7) and (5.10) we obtain 

3B = f d#(Ao) e SM(Ao) (5.14) 

where 

SM,e(Ao) = z ~ 2 f l~/2M - dPxx (co) cos(A0, co) 
x 

dPxx (co) cos(Ao, co) 
x n = l  El 

(5.15) 

(Base or Fermi) 

(5.16) 

The similarity to (2.40) is now apparent. The main difference is that 
the nonrelativistic system has no spatial gauge potentials; furthermore the 
loops have to run either in the positive or the negative time direction 
without backtracking (this corresponds to the absence of pair creation). 

In fact it is possible to derive (5.16) as a limit of a relativistic lattice 
gauge model with continuous time; this requires one to introduce two dif- 
ferent matter fields for the positive and negative particles and to give the 
first one a chemical potential + #  and the second one - #  coupled to the 
charge. To get a finite limit as the speed of light c --+ c~, # has to be chosen 
of the order Mc 2 where M is the particle mass. 

As in the previous section we now decompose A0 into frequencies by 
Fourier transforming in the time direction. 

~- 2~nt ~- 2nnt 
 o(x, + v 2  cos--a- c ix) + x/2 sin - - ~  Sn{x) 

n = 0  

(5.17) 

The measure d#(Ao) factorizes: 

d#(Ao)= f i  dv(C.) f i  dv(S.)dv(Oo) 
n = l  n = l  

(5.1a) 

where each dv is Gaussian with mean zero and covariance 

BV<(x-x') 

We now introduce an external source p(x) (a function on the lattice with 
compact support) and consider 

<(C~,p)~>, <(S~,p)~) 
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The main result of this section is as follows: 

T h e o r e m  5.1. Let M be sufficiently large and in the case of Bose 
or Fermi statistics also z sufficiently small. Then for m # 0 

( (Cm, p)2)A 0 ) c(M, z, ~)(p, - A -l p) (5.19) 

((Sin, p)2)Ao>~c(M, z, fl)(p, - A  ~p( (5.20) 

where c(M, z,/~) > 0 is independent of Ao. 

Proof. We discuss the case of Boltzmann statistics in detail and com- 
ment on the adaptation of the proof of Bose/Fermi statistics. 

In order to analyze the "Polyakov loop" (A o, co) = ~o ~ Ao(co(r), r) & it 
is convenient to split the path co, considered as a 1-form, into two parts 

co =coo+co I (5.21) 

where co o is the straight path satisfying 

coo(C) = co(0) (for all r) (5.22) 

co~ is then a contractible loop intersecting each time slice twice: once going 
up along co and once going down along -co o . 

We have 

(Ao, co)=(Ao, coo)+(Ao, col)=(~o, coo)+(Ao-~o, col) (5.23) 

We use again complex translations, but this time we shift only Cm or 
Sin. Let us consider Cm: 

As before we obtain 

log l <e i(c"'~ >~ol 

Cm(X)--'Cm(x)+ie(x) (5.24) 

((Cm, p)Z>>~(p,-A ' P ) ( 7 - ~ )  

f 2rotor _1601 z~2 2 dP~/2M(CO) 2e 2 p c o s - - 7 - ,  A 
2 x~A0 

(5.26) 

Again we choose B =  - 'yA-lp (but now A is the spatial Laplacean) 
and obtain, collecting the terms of second order in p: 

1 
<<.-~ (dB, dB)Ao + Z ~ f dP~M(co)[cosh e(B, col)- 1] - ( p ,  C,~) (5.25) 

x~Ao  
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The last term needs a little attention. We compute 

( )fo' 2~m___2 - ~ ,  - - y  
- pcos  fl ,A = d r ~ p ( z )  cos ol(y,'c) Vc(z-y) (5.27) 

z , y  

Since 

Col(y, r) = ~y~o(~)- a vo.(o) (5.28) 
this gives 

- ( p  cos---fi---,A2rcma I(D1 ) 

= s dr Z 2nmo 
o z p(z) c o s - - 7  { V.Ez- ,o(~)]  - v .Ez-  ~,(0)] } (5.29) 

Therefore by Cauchy-Schwarz in the r variable ( )2 
s==_ Z 2 f dPx~ (co) cos--~--,A-'o,2zcm'c 

x 

f ;  [ 2~mz'~ 2 <.afde.o,o T M  dr y . , 2 p ( z ) p ( z ' ) [ c o s - - - f  ) 
x , z , z  

• { V c [ z - c o ( ~ ) - x ]  - V c ( z - x ) } { V c [ z ' - ~ o ( ~ ) - x ]  - V~(S-x)} 

(5.30) 

The convolution in the last expression can be carried out and gives 

. ( x~</~ deg/o'M(~o) [ dr Y 2p(~)p(z') cos 
~0 z , z '  

x {2A 2(z-z ')-2A-2[z-z '-co(z)]} (5.31) 

[Note that even though A-2 is not well defined for v ~< 4, the difference 
appearing in (5.31) is.] 

This is easiest to estimate in Fourier space: 

~-<~ ;..o"o"(~ ~ ;o' '~ f . .~2, . , , .  

x {2 - 2 cos[k �9 o ( r ) ]  } (2 - 2 cos kj) 
1 

~K'Z f d~g'o2M(~,) ff dro.(~)' f d'k ~ (2-2cosk,) 
j 1 

= K/~(IO , - - z ~ - l p )  ( 5 . 3 2 )  
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where 

<~ K'(~3/2M) const (5.33) 

 v'=2s p (l- osk,a)  (l-coskj) (5.34) 
t - j = l  

Inserting this bound into (5.26) we obtain 

E 1 ((C~,p)2)>~(p, - A - l p )  7 - - ~ ( l  +ze2Kr (5.35) 

and choosing y optimally concludes the proof for Boltzmann statistics. 
For  Bose and Fermi statistics we need to control the sum over n. This 

is no problem provided z is small enough, 
Note that again the argument does not work for m = 0  because in 

Gaussian approximation a mass is generated for r as in Section 4. 
One might ask whether the proof could also be given for the con- 

tinuum. Clearly this can only work if there is stability of matter, i.e., for 
Fermi statistics. There does not seem to be any fundamental obstacle to 
extend our proof to this case. 

6, C O N C L U S I O N S  A N D  OPEN QUESTIONS 

The results of Section 3 confirm the conventionally accepted picture of 
the phase structure of Higgs models: There is a QED-like phase with a 
massless photon that occurs when the Higgs potential has one rather deep 
minimum at the origin but also when the length of the Higgs field is frozen 
to a rather small value R0 > 0. If the Higgs potential develops a deep well 
far away from the origin or if the fixed length R o of the Higgs field becomes 
large, Balaban et al, ~2~ have shown that the "Higgs mechanism operates," 
i.e., the theory develops a mass gap and shows exponential screening. 

In fermionic models it is also gratifying that we obtain a QED phase 
for large enough fermion mass. The existence of a "Higgs phase" with a 
positive mass gap has not been established for fermionic models with the 
notable exception of the Schwinger model, 

Likewise the result of Section 4 showing that a relativistic plasma does 
not screen magnetostatic fields should be gratifying--though not sur- 
p r i s i ng - to  plasma physicists (and the taxpayer). 

It should be noted, however, that it was crucial to use a noncompact 
version of lattice gauge theory to obtain these results. Our proofs do not 
work if we use Wilson's compact version of lattice gauge theories. There is 

872/~.2/3-4-12 
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a standard explanation for this: The compact theory can be interpreted as a 
model containing magnetic monopoles (15'13~ that condense and make it 
behave like a superconductor in which all fields become massive. We sus- 
pect that this happens even for arbitrarily small hopping parameter, i.e., 
arbitrarily large mass of the matter fields, and does not disappear before we 
reach the continuum limit. It is not certain that in the continuum limit a 
QED phase reappears. 

This underscores again a fact that has been noted a number of times: 
The qualitative behavior of compact lattice gauge models is often quite dif- 
ferent from the presumed behavior of the continuum theory. Where they 
exist, noncompact models seem to approximate the continuum models 
much better than compct ones. 

For compact lattice QED one should not expect the existence of 
charged sectors if a mass is indeed generated as we expect. Very general 
arguments due to Swieca (11/and Buchholz and Fredenhagen (12) exclude the 
existence of charged superselection sectors in massive (continuum) theories. 

Of course in the continuum limit the unwanted mass gap may dis- 
appear as it happens in the three-dimensional compact QED model 
without matter, (~3) and charged superselection sectors may then suddenly 
appear. But none of this has been proven so far. 

Finally our nonscreening results for plasma models almost certainly 
imply that in those models there is, strictly speaking, no Debye screening 
even for static electric sources. By Murphy's law the massless behavior of 
nonstatic correlation functions will undoubtedly pollute the static ones. In 
fact it is easy to write down perturbative contributions to the potential 
between static sources 

V(x- y)- -log lexplie f~o Ao(x, r)dzexpie f~ Ao(y, r)dz]) 
that show coupling to the massless modes. They are given by Feynman 
graphs like Fig. 1, where a wavy line denotes the propagator of the 
massless modes, a dotted line the (massive) propagator of the static mode, 
| the external sources, and a straight line the matter field propagator. 

These graphs have three loops and eight internal vertices, so they 
carry a very small factor ~4h3. For this reason they probably give an unob- 
servably tiny contribution. 

Figure 1 
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The situation is quite different for time dependent sources. Unfor- 
tunately the results of Section 5 deal with sources dependent on imaginary 
time and do not have a direct physical interpretation. But analytic con- 
tinuation to real time should lead also to slow, powerlike decay of real time 
dependent correlations. 
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NOTE ADDED IN PROOF 

Our proof of Corollary 2.2 is incomplete because the two-point 
function for dA for free electromagnetism in dimension d=  2 is a counter- 
example. Let H(k) be the two-point function of dA in momentum space 
considered as a positive linear operator on L 2 2-forms. The claim is that 
continuity of H(k) at k = 0  implies H(o)=0 if d>  2. Proof: Let d(k) be 
the exterior derivative in momentum space, then d(k)* H(k)[l(k)=0. By 
dividing by k 2 and taking the limit as k --, 0 we conclude that, for any u in 
Rd/x Nd and any e e ~  a, (el_u, H(o)e[_ u)=0. If d~>3 this implies 
H(o) >10 by choosing e = e I A e2 with el, e2, e mutually perpendicular. 
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